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Abstract— Internet advertising is a relatively new area where in [?] and [?]. The experiment study on AOL advertising
feedback control has become critically important for scal-  optimization platformAdLearn™ is in progress.

able optimization. But using feedback control in this space The paper is organized as follows. We formally define

is challenging due to nonlinear, time-varying, and uncertin . . . .
plants. In this paper we propose a high-fidelity model referace the problem in Section II. In Section Ill we normalize and

adaptive controller for reference tracking of budget-consrained ~ linearize the plant model. This allows us in Section IV

advertisement campaigns. to design an adaptive controller. We demonstrate the con-
trol performance on simulated ad campaigns in Section V.
[. INTRODUCTION Finally, in Section VI we wrap up the paper with some
Advertising, which is a US$600 billion industry 7]j  concluding remarks and ideas of future work.
has for online applications in recent years come to rely Il. PROBLEM STATEMENT

heavily on feedback control. Each advertiser wish to spend
an advertisement budget in such a way that their speci
branding and/or performance objective is optimized. Coo
eration is not permitted and the advertisers compete over

fic For ad campaigns competing with other bidders on the
Apternet, we implement an optimal bidding strategy] [
nipulated by a campaign-level signalto optimize return
impressions (opportunities to show advertisement to ireter on investment for t_he ad campaign Wit_h budget constraint. To
users). In short, each advertiser wish to serve ads to those-re ad campaign cost fracks a given budget, a feedback
Internet users that generate the highest return on invuaa;ltmecommI design is neeplgd for the campa|gn-level signal
Based on the advertising system analysis 7 fve may

The allocation of ad impressions is handled in impression . . .
exchanges where any advertiser may submit bids for a odel _the relatlonsh|p betwefan the signg) and the ad
(r)émpalgn cost as a discrete-time model:

opportunity to show an ad, but where only the highes

bidder_ is awarded the imprgssiqn. The optimizati(_)n problem c(tT) = f(up((t — l)T))hseas(tT)eE(tﬂ, (1)

turns into a problem of estimating the return on investment ) ) ) )

of each impression opportunity. Given the extremely largfr ¢ = 0,1,2,... and T" being a fixed sampling period,

number of Internet users browsing Internet every day an§here/(u,(tT)) is nonlinear and unknowriyc,s (17') > 0

the large number of advertisers, it is an extraordinarighhi 1S Periodic, anct(¢7') denotes the noise. Note, the cotr)

dimensional problem. In addition to the scale, also timgiepresents the spend 01_‘ the advertiser within t.he timevater

varying and stochastic traffic patterns and user-behaddr al(t —1)T’¢T) and the signal,,((t — 1)T’) remains constant

complexity to the optimization problem. in the_t|me interval(t — 1)T,¢T'). Due to system latency in
Feedback control has played a critical role in solving€POrting the cost, we are unable to obtain the egtl’)

the above type of optimization problems for more than teft ime 7', while we may ?nldydobtaln a cost measurement

years. See e.g.7] for an early but high-level overview, defined as uploaded cost’**®““(iT) at time (1"

The first comprehensive description of control problems in d

online advertising, presented from a feedback control per- cuploaded (47 — Z ame((t —m)T), )

spective, was published ir?][ Because of time-variabilities m=0

and nonlinearities it is not SUrpriSing that adaptive cons where d represents maximum de|ay in reporting cost, and

considered, and?] presents an adaptive controller involving,, > 0, m = 0,...,d, are unknown coefficients satisfying
bid randomization. Adaptive estimation in online advertis 4

ment is also promising, which was demonstrated?jp §nd 1 3)
in the forthcoming paper we propose raodel reference mZ:OO‘m '

adaptive control (MRAC) scheme (e.g.q, [?], [?]) for _ _
reference tracking of budget-constrained advertisemamec N this paper, we develop an adaptive control scheme for
paigns. The effectiveness of the proposed adaptive ctetrolth® campaign-level signal, to handle the nonlinearities

is validated by a high-fidelity advertisement model devetbp @Nd uncertainties of the campaign cost plant to make the
ad campaign cost track a desired budget reference.
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j i;’ﬁ‘i ”}?ﬁ{rg;‘:n@ ia”acc’é- Cp?;"sidem of € a AOL Pt Before proceeding the control design fgy, in this section
forms, 395 Page Mill Road, Palo Alto, CA 94306, UsA We investigate the characteristics of the uploaded cosit pla

ni kl as. kar| sson@ eanaol . com (2) to establish a model for control.



Normalized uploaded cost model An off-line study Note, the parameter, and the dynamics offsef,y in (10)
using experimental advertising data has been conductedare unknown due to the uncertaintiesfdf,(¢)). From (10),
[?] to generate a periodic functioirgeas(tT) > ( to estimate the assumption that,, is constant form = 0,...,d, and
the functionhs..s(tT) in the cost model (1). Dividing the ignoring the noise term, we use the following linear time-
estimated periodic functiorfiseas(tT) calibrated in ] on invariant model to approximate the normalized uploaded cos
both sides of the uploaded cost model (2) and defining model (9) around the operating poiaj,:

normalized uploaded cogtPleaded (¢T'): 2t +1) = A(t) + Buy(t) + f
- D 05

uploaded
guptoaded(ppy — C7 (D) @ y(t) = Cx(t), (13)
hseas(tT) wherex(t) = [21(t), 2(t),...,2q41(t)]T is the state vector
we have the normalized uploaded cost model as signal, and the system parametdrsB, C, and the dynamics
d (¢ 1) offset fy, are
Euploaded(tT) — Z Q. (tT)i, (5) o 1 --- 0
m=0 hseas((t —m)T) 00 --- 0
where - o : : (d+1)x(d+1)
— amhseas((t - m)T) A . . . . € R ’
am (1T') = — ; (6) 00 1
seas( ) i 0 0 0
for m = 0,...,d. In view of the cost model (1), we can 0 0
further express the normalized uploaded cost model (5) as 0 0
d B=1| : | eR™ fo=1| 0 | R,
g tonded (1) = 3~ i (tT) f (up((t — m — 1)T)).  (7) 0 0
m=0 bp pr
H ~uploaded . -
Denotinge (tT) asy(tT): C = [, Ga_1,. .., @r, Go) € RVEHD. (14)

A —uploaded
y(T) = e (tT), (8) Then, the input-output representation of the linear mot&) (

we can obtain a state space representation for the normaliZen be expressed as
uploaded cost model (7): y(t) = Go(2)[up)(t) + Ga(2)[us)(t), (15)

a1 ((t+1)T) = a2 (i), whereu,(t) is a unit step signal; i.ey,(t) = 1, for t =

zo((t + 1)T) = a3 (tT), 0,1,..., and the transfer functions are

: aigbpz? + anbpz®T 4+ aghy,

:Cd+1((t 4 1)T) _ f(up(tT))eE((t+l)T), Go(Z) = Sd+1 ’ (16)

y(tT) = ag(tT)ax1(tT) + ag—1 (tT)xo(¢T) + - - - Ga(2) = a0 fpozt + @ fpoz®t + -+ @afpo
+ o4 ag(tT)z g (tT). 9) zd+1 '

) o ) ) Control objective. Since the state signal(t) is unavail-
Linear time-invariant normalized uploaded cost model  gpje for measurement, and only the output sign@); i.e.,
For AOL advertising optimization platformidLearn™, the  {ha normalized uploaded costrioaded (1) defined in (4), is
period offuscqs (tT') is 24-hours, the sampling period 8 = easurable, we employ an output feedback MRAC design to
0.25 hour, and the maximum delay in reporting costlis:  compensate for the uncertainties®&andC and the effect of
1. So, if the estimatéi,..(tT) is accurate, the parameterihe unknown dynamics offsef, on the output signal(t),

an(tT) can be approximated as, (1) ~ am, Which is  anq make all closed-loop system signals bounded and the
a constant, forn = 0, 1. Without loss of generality, in this output signaly(t) track a reference signal

control design, we assume the parametgi(t7) in (9) is a

(17)

constant; i.e.i,, (tT) = @, With &, being some unknown Ym(t) = Wi (2)[r](2), (18)
constant, form = 0,...,d. Moreover, around an operating wherer(t) is a bounded reference input and
point u,o, the nonlinear functiory (u,) is approximated as 1
W(z) = —, 19
f(up) = bpup + fro, (10) (=) z (19)
where for the linear time-invariant model (13). Then we implement

the adaptive control scheme to the original ad campaign cost

b — Of (up) (11) plant (2) to evaluate the effectiveness of the linearizatio
b My |y based control design.

Foo = flupo) — Of (up) _— (12) Assumptions To proceed the MRAC design, we assume
v v Ouy po i (Al) all zeros of Gy(z) are stable; (A2) an upper bound




d of the maximum delayl is known; (A3) high-frequency  Since the nominal controller parametéis 6;, and¢; are
gain apb, # 0 and the sign ofagb, is known. The unknown, we need to employ the adaptive controller (20),
assumption (Al) is needed for stable plant-model matchingshere the controller parametefis(¢), 02(¢), and65(t) are
the assumptions (A2) and (A3) are used for designingpdated by adaptive laws developed as follows.

controller structure and adaptive laws. Note, we verifyt tha

the assumptions can hold true for the ad campaign cost pIan

in the simulation study.

IV. ADAPTIVE CONTROL DESIGN

In this section, we develop an adaptive control algorithm
for the linear time-invariant model (13) and discuss pd95|b
robustness modifications when implementing to the nontine

uploaded cost model (2).

A. Model Reference Adaptive Control Scheme
The feedback control signal,(t) is chosen as

up(t) = O (H)wi (t) + a2 (t)r (1) + 3(2),

wherew; (t) = §%[u,](t), with A(z) = 2% anda(z) =

[zt ..., 2, 1T

(20)

model matching property.

Proposition 4.1: There exist 67, 65, and 03, such that,
when 6, (t) = 07, 62(t) = 03, and 05(t) = 635, the control
signal u,(t) in (20) ensures signal boundedness and output
tracking lim;_, o (y(t) — ym(t)) = 0 for the system (13).

Proof It can be shown that there exist; =

(071,075, ..., 07" and6; = — b , where
6{1 6&2 O_éd

0, =——, 0, =——, ..., Oj,=——, (21

11 0707 12 0707 ) 1d ) ( )

07441 =0, , o7 (22)

such that the matching equation
- 0,722 g1 ()G ) (23)

A(z)
holds true. Operating both sides of (23) o(t), we have

up(t) = Owi(t) = 3,1 (2) [y — Ga(2)[us]] (1) (24)

Substituting the nominal control signal,(t) = 67w (t) +

05r(t) + 65 in (24) and from (23), we obtain the tracking

errore(t) = y(t) — ym(t) as
e(t)—&oprm(z)K 9*TX((>)

Based on final value theorem, (21) and (22), we have

>G51Gd[us]+9§](t). (25)

d _
i (1-07 22 65 Gute)fu (= Sl

t—o0 O_éobp

. - S o @mfeo
In view of (25), and choosing; = —W, it follows
thatlim; ., e(t) = 0 exponentially. \Y%

€ R4, and 6,(t), 6,(t), and 05(t) are
estimates of nominal parameteéks 65, andé;. In particular,
0s(t) is for compensation of the effect of the unknown
dynamics offsetf, of (13). The existence of the nominal
parameterg;, 65, andd; are ensured by the following plant-

Tracklng error equation. Operating both sides of the
matching equation (23) om,(¢) and substituting the adaptive
controller (20), we obtain the tracking error as

e(t) = aobp Wi, (2)[6‘~TW](t) + fo(1), (26)
hereé( t) = 0(t) — 0, 0(t) = [07 (1), 02(1),05()]F, 0 =
é@ ,05.05)7, w = [wT,r,ugT, and

fp(t)ﬁdoprm(z)K OT*A(( ))> GolGd[us]—i-G;](t).

Note, with the nominal parametery, 65, and 65, f,(t)
decays ta) exponentially as shown in Proposition 4.1.

Estimation error. We introduce an estimation erreft):

e(t) = e(t) + p(t)E(), (27)

wherep(t) is the estimate op* = agb, and
§(1) = 07 (1)C(t) — W (2)[07 w] (1), (28)
C(t) = Wi (2)[w](t). (29)

Substituting the tracking errei(t) (26) in (27), and ignoring
the decaying terny,(t), we obtain

e(t) = p* 0" (£)C(t) + A(H)E(E),
=p(t) = p".

Adaptive laws. Based on the estimation error model (30),
we choose adaptive laws for the paramet&r$ andp(¢) as

(30)
where j(t)

B sign(aob,)TC(t)e(t)
Ot +1)=0(t) — 2 () , (31)
ple-+1) = pte) - 20, (32)

where the error signak(t) is computed from (27), the
adaptation gains satisty< ' =T'" < e = TEobyT La+2 with 77,
being a(d + 2) x (d + 2) identity matrix and0 < v < 2,
and the normalization signah(t) is

)= /14T ()¢

Stability property . Introduce a positive definite function
V(0,p) =p"|0" T 10+ 75" (34)
The time increment of/ (4, 5), along (31) and (32), is

) +&(1). (33)

V(4 1), 5t + 1) - VD), 50)
(. aobCTONA) +1€0)
-2 ) () %)

From the conditions thah < I' = I'"" < &0 2 TEobyT Lat2 and
0 <~ < 2, we obtain

V@Ot +1),p(t+1)) = V(0(¢), 2(( ))

p(t)) < =B (36)



for some constanB; > 0, which implies thatd(t) € L>°, 6(t) updated by (37), we choose an interj@g(t), 05(¢)] as
t) e L, L0 ¢ 2L, 0(t+1)—6(t) € L2NL>, and
o e 03(1) = 1y (1—1) — A%(0) =7 (1) ()~ Ba(O)r (1), (41)

m(t)
p(t+1)—p(t) € L>NL>. Based on the above properties, we it X b
can show that the controller (20) with the parameters ugtlate ~ 93(t) = up(t=1)+A7() =07 (t)wr (£) = 02(t)r(t), (42)
by the adapti\{e laws (31) and (32) can guaran'Fee the clo_sqghere AP(t) > 0 and A%(t) > 0 are design parameters
loop system signal boundedness and asymptotic outpulsigngy esenting the maximum increment and decrement of the

tracking; i.e.lim;—, o0 (y(t) — ym (t)) = 0 @symptotically, for - con4o) signal for each step. Applying the parameter projec
the model (13). The proof can be carried out by using 8, scheme (37) fob;(t) with

similar way as described ir?].

0, if Oremps(t) € [05(1), 05(1)],
B. Robustness Modification for Adaptive Laws fos(t)=4 05(t)bremps(t), if Oremps(t) > 05(t),
05 (t)—Otemp3(t), if Oremps(t) < 05(2).

When implementing the linearization-based adaptive con-
trol scheme to the nonlinear ad campaign cost plant, modét-follows that
ing errors caused by linearization, parameter variatiow, a T " b
system noise may have impacts on the closed-loop systeﬁﬁp(t)zo () (t) € [up (t-1)=A%(), up ((-1)+A(1)], (43)
stability and signal tracking performance. To handle th§hich may enhance the effectiveness of the linearization-
system modeling errors, we employ a parameter projectifsed design around a small neighborhood of the operating
modification for the adaptive laws (31) and (32). point. Note, only if the interval[f4(t),65(¢)] defined in
(41) and (42) satisfie®; € [04(t),05(t)], the projection

Parameter projection. We choose o
modification may make the closed-loop system stable. It

O(t) = Oremp(t) + fo(t), (37) needs further investigation to choose proge(0), A“(t)
and A’(t) to ensure the condition holds true.
p(t) = ptemp(t) + fp(t)v (38)
where 0 0 2 0 0 0 7 C. Gain Schedule Design Based on Parameter Estimation
tem - templly - -+ Viem s Utemp2, Vtemp3
and ptemp(lg are updatepd by (31t) ;ﬁé (32)1,7 arfd(tZ; IS Recall that there is an important design conditidn<
For1(t),- -, Fora(t), foo (), fos()]T and f,(t) are the pro- T = ' < |d%lgﬁ for the controller parameter adaptive

jection terms. For the projection design, we assume th#Ws (31). So the knowledge of the high frequency gain
the nominal controller paramete¥’ belongs to a known Gob, Of the transfer functiorGio(z) (16) is crucial for the

interval 6* € [62,6%], for j = 11,12 1d.2.3. and control design. In this subsection, we implement an adaptiv
7 7 ) J 1 Y LA ) Y 1 . . . .

the nominal parametep* belongs to a known interval Parameter estimation algonthr_r?][to estimate th_e system

p* € [p% p’]. We choose a diagonal design matiix = parameters, in particular the high frequency gaib,.

diag{V11, V12, -- ., 714,72, v3} for (31), and select the ini- Fr_om (16), (17), and the assumption (A2), we can param-
tial estimate of6,(t) as 6,;(0) € [04,6%], for j eterize the model (15) as

11a, 12b, ..., 1d, 2,3, a}nd _the initial estimate q¥(¢) asp(0) € y(t) = 9;T¢(t)’ (44)
[0, p°]. We set projection componenfs;(t) and f,(t) as
where
0, if Oremp; () € [0F, 95?],
Joj()=1 0% = Oremp; (1), if Oremp; (1) > 0°, (39) 0,=[aobp, a1bp, ..., aabp,0,....0,
9;'1 - etempj (t)v lf etempj (t) < 9;'13 6‘0pr7 &1fp0, e ,O_édfp(), O, ey O]T y (45)
for j = 117 121 cety 161 27 3, and ¢(t):|:zil[up](t)7 ctt Zﬁd[up](t% Tt Zﬁdil[up](t)a
. - T
0, if premp(t) € [% "], S 0,2 (0, 2 ()] (46)
fp(t) = pb - ptemp(t)a 1f ptemp (t) > pba (40) i .
0% = premp(t), i premp(t) < p®. To estimate the unknown parameter veafgrin (44), we

introduce a parametric errey,(t):
It can be shown thad(t) — 0(t — 1) € L?, and p(t) — p(t —

1) € L2 [?]. Hence, the closed-loop system stability and the ep(t) = 0] (1)p(t) — y(t) = 6] o(t), (47)
asymptotic output tracking can be guaranteed for the mode . . . ~ .
(13). Note, if there exist certain types of modeling errtins, Wlhere_ep(t) is the estimate 091? andf, = 0, — ;. The
parameter projection scheme may ensure the system gabiﬁtdaptlve law for the vectat (t) is chosen as
and the small output tracking error in the mean sefse [ Tpo(t)ep(t)

Since the linearization-based design may only be effective Op(t +1) = Op(t) - m2(t) ’
around a small neighbourhood of the operating point, we may
need to limit the increment or decrement of the control signavhere0 <", =T <21, 7.,y andm, = /1 + ¢T¢.
u,(t) based on the parameter projection scheme (37)—(38).Since the design parametér of the adaptive law (31)
For the controller parametd (¢), which is a component of needs to be chosen @s< I' = I'"' < I&f—bp‘lg+2| we use

(48)



the estimate),; (¢) of the plant high-frequency gaimyb, to  with the sampling period” = 0.25 hour and the parameters

adjust the design parametiérfor the controller. c1, ¢1, c2, and o calibrated by the off-line empirical study
With a parameter projection modificatior?]][ we have in [?]. The noise in the model (51) may satisfy a normal

the plant high-frequency gain estimatg, (t) € [04,,05,]. distribution .

Based on the assumption (A3) thagb, # 0 and the sign e(t) ' N(0,0?), (54)

gv\fg)rbbésuﬁggzvn;\gthgouitgstzp?g ?e:%ralll_tzé\g?’vissﬁgiéh%wth o calibrated by the empirical study ir?][

a diagnosisl’ for the adaptive law (31) and update it as Normalized uploaded cost modelHence, the normalized

L(t) = v9(t) 17,5, Where uploaded cost model (9) used for control design is

2 { w1 (t+1) = w2(t),
Bp16p1 (1)’ ot + 1) = flup(t))e Y,

for t = 0,1,..., with 74(0) > 0 being an arbitrary initial y(t) = ar(B)ar(t) + ao(H)z2(4T), (55)
gain,\ € [0, 1] being a design forgetting factor, angy > 1  with the output signay(t) defined in (8):
being a constant design parameter. cuploaded (1)
1) = ———=
V. SIMULATION STUDY (0 hseas(t)
In this section, we apply the adaptive controller with thevhere f(up) is modeled as (52), the estimated periodic

parameter projection and gain schedule modifications to fanction hseas( ) is chosen as (53), and the nois€)
high-fidelity ad cost model developed i?][and [?] to assess satisfies the normal distribution in (54).
the effectiveness of the linearization-based design.

Yo (t) = (1 = Xo)va(t — 1) + Ao (49)

: (56)

Control design conditions Before applying the
A. High-fidelity Ad Campaign Cost Model linearization-based adaptive control design, we need to
verify that the design conditions (A1)—(A3) can hold true.
Assumlng that the estlmatéseas() in (53) is accurate;

delay in reporting the cost .08 hour in the mean sense, it & hseas() ~ hseas(t), and from the definition of

follows that, for the uploaded cost model (2), the maximunfi=(t), m = 0,1 in (6), it follows thatao(t) ~ ao and
delay isd = 1 andag > a1 > 0 with ag + a1 = 1, SO we a1(t) = «; for the normalized uploaded cost model (55).

express the uploaded cost model as For the assumption (Al), the zero 6f(z) (16) satisfies
that |20 = £+ ~ 22 < 1 based on the property that
cplonded () = age(t) + ane(t — 1), (50) ap > ay > 0 with ag + a; = 1, which indicates that
the assumption (Al) holds true. For the assumption (A2),
we choose the upper bound dfasd = 1. Based on the
c(t) = f(up(t — 1)) hseas(t)e=®. (51) system analysis in?], the functionf(u,) is increasing with
respect tou, for certain operating region, sindg, n7%,
Cost modeling in ad exchangesThe advertiser is charged p: = 0 andl,, 5, >5:} is a step function with positive step.
based on impressions awarded to the campaign. The caftence, we have that, > 0 in view of (11), which leads to
paign is usually separated into multiple segments to targgign(@ob,) = 1 for the assumption (A3).
desired users in ad exchanges. The impression allocation fo
segmenti is governed by a sealed 2nd price auctigh [ B Adaptive Controller )
Based on the analysis if?]} denotingb; as the bid price for ~ Since the upper bound of the maximum delaylis- 1,
segmenti, b} as the highest competing bid price, anff;  in view of (20), the adaptive controller,(t) is chosen as
as the ava|IabIe number of impressions, we may model the -
cost f(o i (51) a5 up(t) = 01 (Br (1) + Ba(t)r(t) + 05(),  (57)

For AOL advertising optimization platforrAdLearn™,
the controller sampling period i = 0.25 hour, and the

where the cost(t) is modeled as (1):

N where wi(t) = 2[u,)(t) and 61(t), 62(t), and O5(t) are
w) — by 5 speyni®, 52) Uupdated by the adaptive laws (31) and (32) with the pa-
fup) Z Lurpi2bi} 00 2) rameter projection and gain schedule modifications. For the

1=1
where; is an event rate estimaté][ for i = 1,2,....n parameter projection modifications (37) and (38_), we choose
: . . i . the bounds for the parameters based on estimates of the
In the simulation studyy;, p;, andni’;, fori=1,2,...,n,

nominal controller parameters. In particular, #1(¢) in (41)

and®(t) in (42), we may choosA®(t) = v°|u,(t—1)| and
Time-of-day pattern estimation. Based on the study A’(¢) = 4°|u,(t—1)| with somey®,4* € (0,1). For the gain

conducted inP], the periodic functior,..s(¢) in the model schedule modification in (49), the parameter estindgte) is

(51) possesses a 24-hour period and can be estimated by tipelated by the adaptive law (48) with parameter projection.

following periodic functlonhseas( ): Note, since the upper bound of the maximum delay is 1,

the parameterized model (44) to be estimated is

N . (27T . (4AnT
s = Lycssin (G40 +ensin (Gt 59 y(t) = 437 6(0), (58)

are generated based on the scheme developed.in [



Adaptive Controller Gain 1

with HZT - [dobp’dlbpadofpmdlpr]T and ¢(t) = ° U NG ‘
[ up) (1), 27 2[up) (1), 2~ Hus] (1), 22 [us) (1)) - W M v U

Time (hr)

C. Simulation Result Adaptive Controller Gain 2

3
In this simulation study, we simulate a normal scenario ob- M

served in the optimization platforlddLearn™, where the ‘ ‘

campaign cost is simulated by the uploaded cost model (50) ° SidapuveTé'Eﬁtf'S.'.L i Gainl;” “°
with f(u,) in (52) generated by the model developed?h [ ‘ ‘

(including a scheme modeling abrupt increase and decreas - F“‘“—m
of available impressions), the nois&) £ N(0,0.1?), the - .
periodic function Time (h)

0

o

Fig. 2. Controller parameter; (t), 62(t), and 65 (t).
21T 47T
hseas (t)=140.52 sin (—;4 t—|—2.34> +0.17 sin(—;r4 t—H).46> ,

and the latency coefficientsy = 0.83 and«; = 0.17. VI. CONCLUSIONS

For the adaptive controller (57), the estimated time-of-da The online ad impression allocation is handled in impres-
pattern periodic function is chosen as sion exchanges based on the 2nd price auction, so the ad

campaign cost model is a highly nonlinear and time-varying
. (27T ~ (4xT plant with large uncertainties. In this paper, a lineai@at
hseas(t)=1+0.58 Sln(ﬂt+2'5) +0.20 Sm(ﬂ”o'm) » based MRAC scheme has been developed to deal with the

nonlinearities, uncertainties, and time-varying proigsrto
which is a good approximation of Internet traffic in theensure cost tracking of a desired budget. The simulation val
US, the parameter projection bounds for the controller padation on a high-fidelity ad campaign cost model has verified
rameters are chosen #s(t) € [—5,0], 02(t) € [0,100], the effectiveness of the proposed adaptive control scheme.
and 05(t) € [04(¢),05(t)] defined in (41) and (42) with The experiment validation on AOL advertising optimization
A(t) = 0.7Juy(t — 1)| and Ab(¢) = 0.4|u,(t — 1)|. Note, platform AdLearn™ is in progress. Further research of the
ym (t) in (18) is the reference fay(¢) defined in (56), which control of advertising systems may include designing a cost
indicates that the reference for the uploaded et%e??¢(t)  volume forecasting algorithm to estimate the plant gain and
is yupleaded (1) — 4 (1) Bgeqs (t). leveraging bid randomization to make the control designs

In the top plot of Figure 1, the blue line showsmore efficient and robust to real-world auction networks.

yuploaded () the green markers displag/?!oe?ed(t), and the
red markers show(¢). In the bottom plot of Figure 1, the
blue line showsu,(t). Figure 2 shows the parametekst),
- (t), anddz(t). From Figure 1 and Figure 2, we can see that
the adaptive controller can accommodate the large increase
of the available impressions happening between t3oand
29 and between hous3 and 101, and can also compensate
for the large decrease of the available impressions hapgeni
between hout01 and150.
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Fig. 1. Campaign cost measurements and control signal.



